Obtain the expression of electric field at any point by continuous distribution of charge on a  $(i)$ line $(ii)$ surface $(iii)$ volume.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(1)$ Suppose, line is divided into smaller elements of $d l$ length and $\vec{r}$ is the position vector of any smaller element and its linear charge density is $\lambda$ and its charge is $\lambda d l$.

Suppose a point $\mathrm{P}$ (inside or outside) whose, position vector is $\overrightarrow{\mathrm{R}}$. $\mathrm{P}$ is at $r^{\prime}$ distance from $\Delta l$ element and unit vector is $\hat{r}^{\prime}$. Electric field at $P$ due to $\lambda \Delta l$

$\overrightarrow{\Delta \mathrm{E}}=\frac{k \lambda \Delta l}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$

Total electric field at $P$ by superposition principle,

$\overrightarrow{\mathrm{E}}=\sum_{\Delta l} \frac{k \lambda \Delta l}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$

By integration method,

$\overrightarrow{\mathrm{E}}=\int_{l} \frac{k \lambda d l}{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$

$(2)$ Suppose, surface $\Delta S$ is divided into small elements and $\vec{r}$ is the position vector on anyone element.

$\sigma$ is the surface charge density hence, charge on $\Delta \mathrm{S}$ surface element $\Delta \mathrm{Q}=\sigma \Delta \mathrm{S} . \quad \therefore \quad \sigma=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{S}}$

Suppose a point $\mathrm{P}$ (inside or outside) the surface whose position vector is $\overrightarrow{\mathrm{R}}$ and distance from $\Delta \mathrm{S}$ is $r^{\prime}$ and unit vector is $\hat{r}^{\prime}$.

Electric field at $P$ due to charge on $\sigma \Delta \mathrm{S}$,

$\overrightarrow{\Delta \mathrm{E}}=\frac{k \sigma \Delta \mathrm{S}}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$

Total electric field at$ P$ by superposition principle,

$\overrightarrow{\mathrm{E}}=\sum_{\mathrm{S}} \frac{k \sigma \Delta \mathrm{S}}{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$

By integration method,

$\overrightarrow{\mathrm{E}}=\int_{\mathrm{S}} \frac{k \sigma \Delta \mathrm{S}}{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$

$(3)$ Suppose a continuous charge distribution in space has a charge density $\rho$.

Choose any convenient origin $\mathrm{O}$ and let the position vector of any point in the charge distribution be $\vec{r}$.

Divide the charge distribution into small volume elements of size $\Delta \mathrm{V}$.

The charge in a volume element $\Delta \mathrm{V}$ is $\rho \Delta \mathrm{V}$.

Now, consider any general point $P$ (inside or outside the distribution with position vector $\vec{R}$.

Electric field due to the charge $\rho \Delta \mathrm{V}$ is given by Coulomb's law.

$\overrightarrow{\mathrm{E}}=\sum \frac{k \rho \Delta \mathrm{V}}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$

where $r^{\prime}$ is the distance between the charge element and $\mathrm{P}$ and $\hat{r}^{\prime}$ is a unit vector in the direction from the charge element to $\mathrm{P}$.

By the superposition principle, the total electric field,

$\overrightarrow{\mathrm{E}}=\int_{\mathrm{V}} \frac{k \rho \Delta \mathrm{V}}{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}=k \cong \frac{\rho \Delta \mathrm{V}}{r^{\prime 2}} \hat{r}^{\prime} $

$\mathrm{OR} \overrightarrow{\mathrm{E}}=k \int \frac{\rho \Delta \mathrm{V}}{r^{\prime 2}}$ $\hat{r}$

In short, using Coulomb's law and the superposition principle, electric field can be determined for any charge distribution, discrete or continuous or part discrete and part continuous.

897-s163

Similar Questions

A sphere of radius $R$ has a uniform distribution of electric charge in its volume. At a distance $x$ from its centre, for $x < R$, the electric field is directly proportional to

  • [AIIMS 1997]

Consider an atom with atomic number $Z$ as consisting of a positive point charge at the centre and surrounded by a distribution of negative electricity uniformly distributed within a sphere of radius $R$. The electric field at a point inside the atom at a distance $r$ from the centre is

The dimensions of an atom are of the order of an Angstrom. Thus there must be large electric fields between the protons and electrons. Why, then is the electrostatic field inside a conductor zero ?

Two parallel infinite line charges with linear charge densities $+\lambda\; \mathrm{C} / \mathrm{m}$ and $-\lambda\; \mathrm{C} / \mathrm{m}$ are placed at a distance of $2 \mathrm{R}$ in free space. What is the electric field mid-way between the two line charges?

  • [NEET 2019]

An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?

  • [KVPY 2011]